

The Digital Chisel.

A Forensic Analysis of Waste Eradication on the A428 Project

Introduction: From the Hammer to the Chisel

Dr Martin Perks: Christos Christou, Balazs Haraszti, welcome back. In our previous conversation, we discussed the high-level digital strategy for the A428 project. Today, I want to focus on the tactical application of those tools. We will use the Lean construction acronym TIMWOODS: Transportation, Inventory, Motion, Waiting, over production, over processing, Defects, and Skills, to frame our discussion. The goal is to dissect how your digital ecosystem was built to eliminate these eight wastes, providing a tangible blueprint for our members.

Foundational Integrity: Eliminating Defects and Overprocessing

Martin: Let's begin with the wastes that corrupt a project's integrity: Defects and over processing. These are often the root cause of downstream chaos.

The 'Right First Time' Imperative

Martin: Christos, you previously mentioned a 'right first time' approach. How did your digital process prevent defects during a critical task, like a rebar inspection before a concrete pour?

Christos: That is a perfect example, Martin. Once concrete is poured, any rebar defect is incredibly expensive to rectify. The traditional process is risky: an engineer uses a paper drawing that might be outdated, takes notes, and returns to the office to compile a report. The potential for error is immense.

On the A428, we re-engineered that workflow. The inspector arrives at the formwork with a tablet. A QR code on the asset brings up the specific Inspection and Test Plan (ITP) for that task.

Balazs: This is not just a PDF. The checklist on the tablet is a dynamic interface connected directly to our Common Data Environment (CDE), ProjectWise. It has live links to the latest 3D BIM model, material specifications, and reinforcement schedules. There is zero ambiguity. The inspector verifies the physical asset against its digital twin in real-time.

As they complete the checklist, they attach evidence. For each checkpoint, they take a time-stamped and geotagged photograph, which is automatically appended to the digital

record. If a non-conformance, a Defect, is found, they raise an observation in the system. This becomes an active task assigned to the relevant subcontractor's supervisor with a deadline for rectification.

Christos: Crucially, the system is configured so that concrete cannot be ordered until the digital checklist is 100% complete and every non-conformance is digitally signed off. It creates a "closed-loop system". It becomes procedurally impossible for defects to be buried or forgotten. We moved from trust-but-verify to a system of built-in, verifiable proof, the most direct countermeasure to the waste of Defects.

The War on Redundancy

Martin: *That closed-loop system is powerful. How did your architecture attack over processing, which is doing more work than necessary, such as redundant checks or duplicate data entry?*

Balazs: Our core principle was a "single source of truth". The enemy of efficiency is data duplication. Our system is designed around the principle of 'enter once, use many times'. When an inspector completes a checklist on their tablet, that data is live in the CDE instantly. It does not need manual transcription into daily, weekly, or monthly reports; those are generated automatically from the source data. We eliminated entire chains of administrative work that add no value, a classic form of over processing.

We also digitised approval workflows. A paper permit-to-dig might take days to be signed off. Our system routes the digital record for approval automatically. The manager receives a notification, reviews the evidence, and approves it digitally. The process is reduced from days to minutes, leaving a perfect audit trail.

Christos: There is a commercial dimension to this as well. The dynamic 5D model, linking the 3D BIM to the CostOS platform, is a weapon against "gold-plating" or over-engineering. This is the tendency to add features or use higher-grade materials than the client requires. Because our 5D link is refreshed bi-weekly, the cost implications of design decisions are transparent and immediate. This visibility discourages unnecessary complexity, the very definition of over processing.

The integrated digital ecosystem also combats "process entropy". On traditional projects, processes become more complex over time as new manual checks are added in reaction to failures. Our CDE counteracts this. By defining a single, optimised digital workflow for critical tasks, it makes it impossible for individuals to add redundant steps. The system's transparency provides the confidence needed to remove old checks, enforcing process simplicity.

The Economics of Time and Movement: Conquering Waiting and Motion

Martin: Now, let's turn to the human-centric wastes that impact site productivity: Waiting and Motion.

The End of Information Latency

Martin: Let's focus on the waste of Waiting, which is idle time caused by a lack of materials or information. How did your digital hub eliminate waiting for information for a site engineer?

Christos: The "before" picture is familiar. An engineer at a work area has a query. They stop work, walk back to the site office, find the drawing, and hope it is the latest revision. If they need clarification, they then have to find a senior engineer. The cycle can consume an hour, while the work crew is left idle. This is a classic example of the waste of Waiting.

Now, the "after" picture on the A428. The engineer has the same query. They pull out their tablet, open the ProjectWise CDE, and within seconds access the federated 3D model and the latest approved drawing for that specific area. As I said before, they have "instant access... to the very latest approved drawing". The information latency is gone. If clarification is still needed, they can raise a digital Request for Information (RFI) or initiate a video call with the design team. The waiting time is compressed from an hour to a few minutes.

Minimising Motion – Designing a 'Digital Workplace'

Martin: That leads to the waste of Motion, the unnecessary movement of people. How did you design the system to minimise this physical waste for 800 people across a £1 billion site?

Balazs: Our strategy was to bring the "office" to the "workface". People move because what they need is not where they are. We attacked this by creating a digital workplace accessible from anywhere on the 10-mile-long site. This was built on ubiquitous site connectivity, ruggedised tablets for all technical staff, and mobile-first applications.

Tools like ESRI GIS and Survey 123 were critical. An engineer no longer needs to walk to the office for a permit, check a drawing for underground services, or file a daily diary. They can complete all forms digitally and view their location on a GIS map that overlays all known utilities. Each function eliminates a round trip to the site compound. Multiplied by hundreds of staff, this eliminates millions of pounds worth of wasted Motion.

Christos: This is not just about saving time. It fundamentally changes an engineer's work. Reducing Motion waste is a direct catalyst for mitigating the eighth waste, the underutilisation of Skills. On a traditional site, a skilled engineer's day is fragmented by low-value Motion. Our digital platform eliminates this fragmentation, creating uninterrupted blocks of high-concentration time for our engineers at the physical location where the problem exists. This is essential for them to apply their skills to higher-value tasks like complex problem-solving or mentoring junior staff. Every minute of Motion we eliminate is a minute that can be reinvested in high-value, skilled activity.

Mastering Project Logistics: Optimising Transportation and Inventory

Martin: Let's now focus on the physical lifeblood of the project: materials and equipment, and the wastes of Transportation and Inventory.

From Chaos to Coordination

Martin: *How did your system allow for more intelligent planning of Transportation, which involves the unnecessary movement of materials and equipment?*

Christos: On a 10-mile linear project, uncoordinated logistics create chaos. If multiple subcontractors schedule large deliveries to the same entrance at the same time, the result is congestion and double-handling. This is a costly form of Transportation waste. Our approach was to use the 4D schedule, the 3D model linked to the construction sequence, as a logistics planning tool.

Balazs: We integrated this 4D schedule with the ESRI GIS platform. This gave our logistics team a powerful visual interface. They could see not just what materials were needed, but precisely where and when they were required. This allowed us to move to a proactive logistics model, working with our supply chain to schedule deliveries in a staggered, coordinated fashion. This facilitated a "just-in-time" delivery philosophy, directly addressing Transportation waste.

Avoiding the 'Capital Trap'

Martin: *That just-in-time approach impacts Inventory waste. How did your 5D model provide a direct countermeasure to over-ordering and excess inventory, which is a huge cash flow burden?*

Balazs: The dynamic link between the BIM and the CostOS platform, which holds the Bill of Quantities, was the central mechanism for controlling inventory waste. On traditional projects, procurement is often based on static drawings, leading to over-ordering. Our live 5D model makes this impossible. The BIM is the single source of truth for geometry, and this is dynamically linked to the Bill of Quantities. When a designer updates a component, the required material quantities update automatically. Our procurement team orders against a live, model-driven demand signal.

Christos: The commercial impact is significant. It directly attacks the problem of capital being tied up in idle materials. On a project this size, millions of pounds of excess steel sitting in storage is a massive drain on working capital. It also incurs secondary costs for storage, security, and the risk of damage. By ensuring that what we buy is precisely what we need, the system minimises surplus and prevents wasteful inventory.

Lean Waste (TIMWOODS)	Traditional Construction Example (The "Before")	A428 Digital Tool/Process Applied (The "How")	Observed Improvement/Impact (The "After")
Transportation	Uncoordinated delivery of steel, causing site congestion and double-handling.	GIS-integrated logistics planning linked to the 4D schedule (BIM + Time).	Just-in-time deliveries, optimised routes, reduced site congestion, minimised material handling.
Inventory	Pallets of excess bricks ordered from an outdated schedule, tying up capital and deteriorating in storage.	Live 5D model (\$3D~model+schedule+cost\$) linking design directly to procurement quantities in CostOS.	Minimal material surplus, reduced capital waste, avoidance of storage costs and material degradation.
Motion	Engineer making multiple daily trips between the work face and the site office to find drawings and file reports.	Point-of-work access to the entire CDE (ProjectWise) and digital forms (Survey 123) on a ruggedised tablet.	Drastic reduction in non-value-add movement; increased value-add time for technical staff at the work face.
Waiting	A concrete crew waiting for an engineer to return from the office with clarification on a drawing.	Instant, on-site access to the latest approved drawings and 3D models via the CDE on a tablet.	Elimination of information-based delays; improved workflow continuity and crew productivity.
Overproduction	A team fabricating reinforcement cages based on a schedule before the final foundation design is approved.	Integrated 5D model ensures work is only instructed and materials procured based on the approved, scheduled design.	Prevention of abortive work; ensures production is pulled by real demand, not pushed by forecasts.
Overprocessing	A quality report requiring multiple layers of manual review and physical signatures, delaying approval.	Automated digital workflows with time-stamped approvals within the CDE.	Streamlined administration, instant status visibility, and a perfect, irrefutable audit trail.
Defects	Reworking a foundation poured to an outdated drawing, discovered weeks later by a surveyor.	Real-time, tablet-based checklists linked to the live BIM, with photographic evidence and a closed-loop non-conformance system.	Proactive quality assurance; "right first time" execution, virtual elimination of rework due to incorrect information.
Skills	Senior engineers spend their days chasing paperwork and verifying basic information instead of solving complex problems.	Automation of administrative tasks and instant information access, freeing up expert time.	Redeployment of senior talent to high-value activities like value engineering, innovation, and mentoring.

Unleashing Project Potential: Preventing Overproduction and Maximising Skills

Martin: We now arrive at the most strategic wastes: Overproduction, often called the "mother of all wastes," and Skills, the underutilisation of talent.

The 'Pull' System in Practice

Martin: Overproduction is producing more than is needed, or before it is needed. How does your integrated system safeguard against this foundational waste?

Christos: The system facilitates a shift from a "push" to a "pull" production model, a core tenet of Lean. In a traditional "push" system, work is done according to a forecast, often to keep people or machinery busy, which leads to Over-production. Our platform enforces a "pull" system. The integrated 4D schedule pulls the work forward based on actual needs. A work package cannot be started until all its digital prerequisites are met and signed off. This prevents teams from working ahead on elements that might be subject to a late design change, thereby preventing abortive work.

Balazs: The drone-based reality capture provides another automated check. We regularly fly the site and use photogrammetry to create an accurate 3D point cloud of as-built conditions. This is automatically compared against the design model in the CDE, providing objective verification that only planned and scheduled work has been completed. It acts as a final safeguard against over-production.

The Ultimate Value Multiplier

Martin: Finally, let's discuss the waste of Skills. Can you share an example of how an engineer, liberated by these tools, added value in a way they couldn't have before?

Christos: Certainly. A brilliant senior structural engineer on our team estimated that on a previous project, she spent 50% of her time on non-engineering tasks: chasing signatures, checking drawing revisions, and verifying information. This is a tragic waste of expertise.

On the A428, the automation of those tasks completely changed her role. The time she got back was reinvested in high-value engineering. In one instance, she used the live 5D model to conduct a value engineering exercise on a new bridge. By analysing the real-time cost data, she identified an alternative material specification for non-critical components. The change had no negative impact on performance but resulted in a direct cost saving of over £200,000. That saving is the true return on investment. It is value that would not have been created because the expert mind that unlocked it would have been consumed by the wastes of Motion and Overprocessing.

This is where "digital trust" pays its greatest dividend. The creation of a single source of truth

for every action has a cascading cultural effect. When all parties trust the data, the adversarial dynamics that can poison projects dissolve. This reduces contractual friction and suppresses multiple wastes. There is less **Waiting** for decisions, less **Overprocessing** in compiling claims, and fewer **Defects** from miscommunication. It allows senior managers to focus their **Skills** on delivering the project, not fighting contractual battles.

Conclusion: The Blueprint for a Lean Digital Future

Martin: This has been a fascinating analysis. The A428 project is a powerful case study that digital tools, guided by a clear strategy, become a purpose-built engine for the systematic eradication of Lean waste. You have shown how an integrated CDE acts as a bulwark against "process entropy," and how eliminating Motion unlocks the potential of human Skills.

Martin: *Finally, for leaders wanting to begin their own journey, what is the single most critical piece of advice you would offer?*

Christos: From a strategic perspective, focus relentlessly on the 'why' before the 'what'. Define the specific wastes you are targeting first. The entire strategy must be rooted in a genuine Lean mindset. Technology is merely the tool to execute that timeless strategy.

Balazs: From a technical delivery standpoint, prioritise integration and the end-user. The real power is unlocked by the seamless flow of data between systems. And that system must be designed for the person on site. The Digital Working Group, which defined user needs first, was the most critical step in our delivery process.

Martin: Christos, Balazs, thank you. You have provided a detailed and practical blueprint for applying Lean principles and digital technology in our industry. A powerful lesson for us all.